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a b s t r a c t

Many efforts are underway to produce broad-scale forest attribute maps by modelling forest

class and structure variables collected in forest inventories as functions of satellite-based

and biophysical information. Typically, variants of classification and regression trees imple-

mented in Rulequest’s© See5 and Cubist (for binary and continuous responses, respectively)

are the tools of choice in many of these applications. These tools are widely used in large

remote sensing applications, but are not easily interpretable, do not have ties with sur-

vey estimation methods, and use proprietary unpublished algorithms. Consequently, three

alternative modelling techniques were compared for mapping presence and basal area of 13

species located in the mountain ranges of Utah, USA. The modelling techniques compared

included the widely used See5/Cubist, generalized additive models (GAMs), and stochastic

gradient boosting (SGB). Model performance was evaluated using independent test data sets.

Evaluation criteria for mapping species presence included specificity, sensitivity, Kappa,

and area under the curve (AUC). Evaluation criteria for the continuous basal area variables

included correlation and relative mean squared error. For predicting species presence (set-

ting thresholds to maximize Kappa), SGB had higher values for the majority of the species

for specificity and Kappa, while GAMs had higher values for the majority of the species for

sensitivity. In evaluating resultant AUC values, GAM and/or SGB models had significantly

better results than the See5 models where significant differences could be detected between

models. For nine out of 13 species, basal area prediction results for all modelling techniques

were poor (correlations less than 0.5 and relative mean squared errors greater than 0.8),

but SGB provided the most stable predictions in these instances. SGB and Cubist performed
equally well for modelling basal area for three species with moderate prediction success,

while all three modelling tools produced comparably good predictions (correlation of 0.68

and relative mean squared error of 0.56) for one species.
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1. Introduction

Maps of tree species presence and silvicultural metrics like
basal area1 are needed throughout the world for a wide variety
of forest land management applications. These map estimates
provide land managers with additional stand-level descrip-
tors needed in support of their decision-making processes.
Knowledge of the probable location of certain key species of
interest as well as their spatial patterns and associations to
other species are vital components of any realistic land man-
agement activity. Also needed are spatial representations of
relative abundances of these species in the form of basal area
predictions which serve as surrogates for important forest
attributes like volume and biomass.

In many broad-scale mapping efforts, forest class and
structure variables collected in forest inventories are modelled
as functions of satellite-based and biophysical information.
Examples in the USA include national mapping projects of the
U.S. Forest Service, Forest Inventory and Analysis Program2

(FIA; Bechtold and Patterson, 2005), the U.S.G.S. National Land
Cover Data (NLCD; Vogelmann et al., 2001), and the multi-
agency LANDFIRE3 project (Rollins et al., in press). FIA con-
ducts inventories of status and trends in forested ecosystems
throughout the U.S. and produces nationwide maps of forest
attributes at 250 m resolution. NLCD is a project sponsored
by the Multi-Resolution Land Characteristics (MRLC4) consor-
tium, to produce nationwide maps of land cover at 30 m res-
olution. LANDFIRE is an interagency wildland fire, ecosystem,
and fuel-mapping project designed to generate 30 m resolu-
tion maps of vegetation, fire, and fuel characteristics across
the USA.

In all three of these U.S. mapping applications,
Rulequest’s©5 See5 and Cubist software packages are the
tools being used for modelling and prediction. These variants
on classification and regression trees are partially described
in Quinlan (1986, 1993). A few of the reasons behind See5
and Cubist’s popularity in broad-scale modelling exercises
are: their relative ease of use; their fast model-building
behavior for either continuous or discrete response variables;
their lack of distributional assumptions; and their ability to
generate relatively good model predictions in a production
environment. While these automated modelling tools are
widely used in large remote sensing applications, they are
not easily interpretable and also use model fitting algorithms
that are proprietary and thus not published or known to the
user.

Numerous other techniques have been used for predic-
tive mapping in forestry applications including nearest neigh-

bor methods (e.g., Tomppo, 1991; Franco-Lopez et al., 2001;
Ohmann and Gregory, 2002; McRoberts et al., 2002), multivari-
ate adaptive regression splines (e.g., Iverson and Prasad, 2001;
Moisen and Frescino, 2002; Prasad and Iverson, 2002), random

1 Sum of cross-sectional areas of tree stems measured at 1.4 m
above ground, expressed per land unit area.

2 http://www.fia.fs.fed.us/.
3 http://www.landfire.gov.
4 http://www.mrlc.gov.
5 www.rulequest.com.
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forests (e.g. Bunn et al., 2005; Prasad et al., 2006), and artifi-
cial neural networks (e.g., Foody et al., 2003; Thuiller, 2003), to
name just a few. Generalized additive models (GAMs) (Hastie
and Tibshirani, 1986, 1990) are widely used in the ecological
literature (Guisan et al., 2002), and offer advantages of inter-
pretability and reliable predictions. In addition, stochastic gra-
dient boosting (SGB; Friedman, 2001, 2002) is a recent advance
in predictive modeling, but has yet to be tested for predicting
species distributions.

In this paper, we compared the predictive performances
of three modelling techniques (See5/Cubist, GAMs and SGBs)
for mapping species presence and basal area of 13 tree
species in the mountains of Utah, U.S.A. Models were con-
structed using forest inventory field data and ancillary topo-
graphic and satellite-based information. For species pres-
ence/absence, prediction accuracies were evaluated using tra-
ditional threshold-dependent measures of accuracy, thresh-
old independent Receiver Operating Characteristic (ROC) plots
and associated Areas Under the Curve (AUC). For species basal
area, the effects of modelling techniques on global measures
of accuracy and residual plots were assessed. For both species
presences and basal areas, accuracy measures and analyses
were conducted using independent test sets.

2. Materials and methods

2.1. Data description

2.1.1. Study region
The study area comprises over 6 million hectares (ha) of land
predominantly in Utah, with small portions overlapping into
Wyoming and Idaho in the Interior West region of the USA
(Fig. 1). The area is made up of two ecological provinces (Bailey
et al., 1994) that include the Wasatch and Uinta Mountain
Ranges in the north, and a series of high plateaus in the south.
The study area is delineated by the United States Geological
Survey (USGS) zone 16 (Fig. 1), as defined by the national map-
ping protocols within the MRLC project (Homer and Gallant,
2001). Our analyses are restricted to forested lands, compris-
ing approximately half the area of zone 16. This zone con-
sists of heterogeneous mountainous terrain reaching eleva-
tions of over 3000 m, and includes a wide variety of vegetation
types ranging from sagebrush shrub-steppe through conifer-
dominated forests to alpine communities.

2.1.2. Response variables
FIA provided data for the response variables of species pres-
ence and basal area. A network of permanent sample plots
has been established across the country at an intensity of
approximately one plot per 2400 ha, and data collection is con-
ducted under an annual rotating panel system (Bechtold and
Patterson, 2005). Sample plots in the study region have been
measured since 1993. A systematic sample of field plots was
originally established on a 2.5 km grid on lands administered
by the National Forests, and on a 5 km grid across all other land

ownerships. Under the annual rotating panel, 1/10 of the plots
established on the 5 km grid are revisited each year. Of the 3456
plots available in zone 16, only forested and single-condition
plots were used in these analyses. Thus, we restricted our

http://www.fia.fs.fed.us/
http://www.landfire.gov/
http://www.mrlc.gov/
http://www.rulequest.com/
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Fig. 1 – The study area is delineated by the United States Geological Survey zone 16 (Homer and Gallant, 2001), as defined by

different time periods representing the temporal dynamics of
the Multi-Resolution Land Characteristics consortium.

analyses to forested plots falling completely within a partic-
ular forest condition (dictated by tree size, composition, and
density), and removed plots that had complete or partial non-
forest vegetation. A total of 1930 sample plots remained for
our analyses, 20% of which were withheld as an independent
test set. At each sample plot, data on forest stand structure
were sampled in four circular sub-plots, one center and three
satellite sub-plots regularly spaced around the center sub-plot
(Fig. 2). Each sub-plot covers a radius of 7.3 m and the total area
represented by one sample plot was approximately 0.6 ha. At
each FIA forested sample plot, extensive stand- and tree-level
measurements were collected. Individual tree measurements
were compiled and combined with stand-level variables to
produce plot-level summaries. A particular tree species was

considered present if at least one tree 2.54 cm or greater in
diameter (measured at breast height, ∼1.4 m) of that species
was tallied. Otherwise the species was considered absent. In
addition, total tree basal area by each of 13 tree species was
compiled for each plot. Table 1 summarizes the number of
occupied plots and prevalence for each of 13 tree species in
zone 16.

2.1.3. Predictor variables
Satellite imagery from the MRLC consortium comprised some
of the predictor variables used in these analyses. The MRLC
consortium was organized to acquire and process Landsat
7 Enhanced Thematic Mapper Plus (ETM+) data for multiple
dates across the United States and Puerto Rico and to coordi-
nate efforts to produce the NLCD for 2001 using this imagery
and ancillary data.6 Satellite imagery was collected for three
vegetation: early (spring), peak (summer), and late growing
seasons (fall). The steps used for standardizing the imagery

6 http://www.mrlc.gov.

http://www.mrlc.gov/
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Table 1 – Number of occupied plots and prevalence for each of the 13 most common tree species in Zone 16

Latin name Symbol Common name Prevalence Plots w/species
present

Abies concolor ABCO White fir 0.12 233
Abies lasiocarpa ABLA Subalpine fir 0.22 429
Acer grandidentatum ACGR3 Bigtooth maple 0.06 119
Cercocarpus ledifolius CELE3 Curlleaf mountain-mahogany 0.08 147
Juniperus osteosperma JUOS Utah juniper 0.25 473
Juniperus scopulorum JUSC2 Rocky Mountain juniper 0.12 230
Pinus contorta PICO Lodgepole pine 0.12 230
Pinus edulis PIED Common or twoneedle pinyon 0.21 405
Picea engelmannii PIEN Englemann spruce 0.18 357
Pinus ponderosa PIPO Ponderosa pine 0.09 173
Populus tremuloides POTR5 Quaking aspen 0.32 623
Pseudotsuga menziesii PSME Douglas-fir 0.22 417
Quercus gambelii QUGA Gambel oak 0.14 273
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rocessing are summarized in the Landsat science data users
andbook (Irish, 2001), in Homer et al. (2004), and in the litera-
ure cited therein. Here, we briefly discuss the basic processing
teps applied to the data set we used in our study area.

Landsat scenes are processed in several steps in order to
roduce consistent and reliable spectral information of land
over. These steps include geometric and terrain correction,
nd a suite of radiometric corrections. Geometric and terrain
orrections rectify the image to match features on the ground,
emoving distortion caused by the sensor and the topogra-
hy on the ground. Radiometric correction calibrates the raw

igital numbers (DN, 0–255) recorded by the sensor with the
eflectance on the ground. This removes distortions caused
y the sensor, sun illumination geography, and atmospheric

ig. 2 – Four subplots comprising an FIA sample plot. The
ridlines indicate the approximate Landsat Thematic
apper (TM) pixels of roughly 30 m side length. The
ighlighted 3 × 3 pixels represent the 90 m × 90 m area
e-sampled for linking the FIA plot data with the TM-based
redictors.
1930
2997

effects, the latter being the most challenging. Several atmo-
spheric correction algorithms have been developed (e.g. Liang
et al., 1997), but for large area applications, many users are still
concerned with possible unknown errors that may arise due to
uncertainties in the ground and atmospheric data necessary
to run these algorithms (e.g. Cohen et al., 2001). The alterna-
tive is to convert DN values to at-satellite reflectance values,
thereby normalizing the illumination geometry, yet reducing
the need for atmospheric correction (Huang et al., 2002).

The MRLC ETM+ bands were first resampled using cubic
convolution into an Albers Equal Area map projection. Then all
bands were georectified using cubic convolution re-sampling
techniques, terrain corrected using the USGS national ele-
vation dataset, and the DN values were converted to at-
sensor radiance (L) values. Registration accuracy standards
were within 1 pixel (30 m) root mean square error (RMSE).
Next, bands 1–5 and 7 were converted to at-sensor reflectance
(�) values. Then, the tasseled cap (TC) transformation (Kauth
and Thomas, 1976; Christ and Cicone, 1984) – a linear re-
combination of bands 1–5 and 7 – was applied according to
Huang et al. (2002) resulting in three new products, namely
the soil brightness index (SBI), the green vegetation index
(GVI) and the wetness index (WI). The TC transformation is
often applied to regions where a full atmospheric correction
is not feasible. It typically explains up to 95% of the variance
per scene. Additionally, the normalized difference vegetation
index (NDVI) was calculated using bands 3 (RED) and 4 (NIR),
so that NDVI = (NIR + RED)/(NIR-RED). All of these indices were
calculated based on �-values per band. Finally, L of band 6
(thermal infrared) was converted to at-satellite temperature
(B9 hereafter), providing a physically based variable.

The indices, along with bands 1–5 and 7, were resampled
to a 90 m cell size based on a 3 × 3 moving window using the
“focalmean” and “focalstd” GRID functions in ESRI ArcGIS©.
This was done to ensure coverage of an area that is at least the
full spatial extent of the dependent forest inventory plot data
(Fig. 2), which is considerably larger than one 30 m Landsat TM

pixel.

In addition to the ETM+ bands and indices, we used location
(in x and y coordinates in Albers Equal Area map projection),
elevation (m) from the National Elevation Dataset (NED; Gesch
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Table 2 – Description of predictor variables

Type Names Description

Location AlbX Albers equal area X coordinate
AlbY Albers equal area Y coordinate

Topography Elev Elevation in meters
Slope Slope in degrees
Asp-E “Eastness” [sine(aspect)]
Asp-N “Northness” [cosine(aspect)]

Reflectance B1spr.M, B1sum.M, B1fal.M Band 1: Visible blue [0.450–0.515 �m]
B1spr.S, B1sum.S, B1 fal.S

B2spr.M, B2sum.M, B2 fal.M Band 2: Visible green [0.525–0.605 �m]
B2spr.S, B2 sum.S, B2 fal.S

B3spr.M, B3sum.M, B3 fal.M Band 3: Visible red [0.630–0.690 �m]
B3spr.S, B3 sum.S, B3 fal.S

B4spr.M, B4sum.M, B4 fal.M Band 4: Near infrared [0.775–0.900 �m]
B4spr.S, B4 sum.S, B4 fal.S

B5spr.M, B5sum.M, B5 fal.M Band 5: Shortwave infrared [1.550–1.750 �m]
B5spr.S, B5 sum.S, B5 fal.S

B7spr.M, B7sum.M, B7 fal.M Band 7: Shortwave infrared [2.090–2.350 �m]
B7spr.S, B7 sum.S, B7 fal.S

B9spr.M, B9sum.M, B9 fal.M “Band 9”: At sensor surface temperature
B9spr.S, B9 sum.S, B9 fal.S

Indices TC1spr.M, TC1sum.M, TC1fal.M Tasseled cap soil brightness index [using B1–B5, B7]
TC1spr.S, TC1sum.S, TC1fal.S

TC2spr.M, TC2sum.M, TC2fal.M Tasseled cap green vegetation index [using B1–B5, B7]
TC2spr.S, TC2sum.S, TC2fal.S

TC3spr.M, TC3sum.M, TC3fal.M Tasseled cap wetness index [using B1–B5, B7]
TC3spr.S, TC3sum.S, TC3fal.S

NDVIspr.M, NDVIsum.M, NDVIfal.M Normalized difference vegetation index [using B3, B4]
NDVIspr.S, NDVIsum.S, NDVIfal.S

B9spr.M, B9sum.M, B9fal.M “Band 9”: at sensor surface temperature [using B6H]
B9spr.S, B9sum.S, B9fal.S

d fal
pled
Variable names with “spr”, “sum”, and “fal” refer to spring, summer an
deviations obtained when indices and reflectance bands were resam

et al., 2002) and slope and aspect values derived from the NED
by their respective GRID functions in ArcGIS©. These variables
were also resampled to 90 m. Aspect took the form of two
transformed variables “northness” and “eastness” (Clark et al.,
1999) where northness is the cosine of aspect and eastness is
the sine of aspect. Digital values of these predictor layers were
extracted from imagery and DEM data for each FIA location.
Table 2 summarizes all predictor variables.

2.2. Modelling

Species presence was modelled for each species individually.
FIA plots in the training data set where the species of interest
was present were given a response value of one, and all other
plots were given a value of zero. Predictions in the form of
probability of species presence were made for all plots in the
test set. Species basal area was modeled using only those FIA

plots in the training data set where the species of interest was
present. Predictions of basal area for a particular species were
made for those plots in the independent test set having that
species present.
l imagery respectively, while “.M” and “.S” refer to mean and standard
to 90 m based on 3 × 3 moving windows.

2.2.1. Generalized additive models
GAMs (Hastie and Tibshirani, 1986, 1990) are nonparamet-
ric extensions of generalized linear models (Nelder and
Wedderburn, 1972; McCullagh and Nelder, 1989) which are in
turn an extension of the classical linear model. GAMs have
been used extensively in ecological applications and model
fitting details are well documented (see Yee and Mitchell,
1991). An extensive review of GAM applications in ecology is
given in Guisan et al. (2002). Predictive mapping using GLMs
and GAMs pertaining to forest inventory applications is illus-
trated in Moisen and Edwards (1999), Frescino et al. (2001), and
Moisen and Frescino (2002). Muñoz and Felicisimo (2004) com-
pare GLMs to alternative predictive mapping methods. Spatial
prediction of species distributions using GAMs is explored by
Austin (2002), while a GAM application tool for ecological anal-
yses and spatial prediction has been built by Lehmann et al.
(2002). Recent advances in GAM methodology have been made

by Wood and Augustin (2002), as well as Yee and MacKenzie
(2002).

GAMs were fit in R (R Development Core Team, 2005; Ihaka
and Gentleman, 1996) using the gam package (Hastie and
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2.3.1. Presence/absence
Because the utility of maps for different management appli-
cations cannot be captured in a single map accuracy number,
e c o l o g i c a l m o d e l l i n

ibshirani, 1996; Venables and Ripley, 2002). The binary species
resence/absences were modeled using a binomial family
ith logit link, while species basal area was modeled with
gamma family and log link. For both continuous and dis-

rete responses, predictor variables first entered the models
ndividually using a smoothing spline with a relatively con-
ervative smoothing parameter to avoid fitting noise. Because
f the unwieldy number of predictor variables, a series of step-
ise procedures were applied using each of seven classes of
redictor variables individually to reduce the number of pre-
ictor variables and to determine if those that remain should
nter with smooth or linear terms. These seven classes of
redictor variables included location and topography, spring
ands, spring indices, summer bands, summer indices, fall
ands, and fall indices. Stepwise results were compiled to cre-
te unique models for each species. An alternative approach to
reating subsets of predictor variables is offered by Leathwick
t al. (2006).

.2.2. Variants on classification and regression trees
lassification and regression trees, also known as recursive
artitioning regression (Breiman et al., 1984), are widely used

n remote sensing applications (e.g. Friedl and Brodley, 1997;
riedl et al., 1999; Hansen et al., 2000; Huang and Townshend,
003; Prasad and Iverson, 2002; Schwarz and Zimmermann,
005). Trees subdivide the space spanned by the predictor vari-
bles into regions for which the values of the response variable
re approximately equal, and then estimate the response vari-
ble by a constant in each of these regions. The tree is called
classification tree if the response variable is qualitative,

nd a regression tree if the response variable is quantitative.
wo recent enhancements to tree-based methods have met
ith considerable success in mapping applications (Chan et

l., 2001). One is known as bagging, or bootstrap aggregation
Bauer and Kohavi, 1998; Breiman, 1996). The other is called
oosting (Freund and Schapire, 1996) with its variant Resam-
ling and Combining (ARCing) (Breiman, 1998). These iterative
chemes each produce a committee of expert tree models by
esampling with replacement from the initial data set. After-
ards, the expert tree models are averaged using a plurality

oting scheme if the response is discrete, or simple averag-
ng if the response is continuous. The difference between
agging and ARCing/boosting is the way in which data are
esampled. In the former, all observations have equal prob-
bility of entering the next bootstrap sample; while in the
atter, problematic observations (i.e. observations that have
een frequently misclassified) have a higher probability of
election.

The species presence models were generated using clas-
ification trees with boosting implemented in Rulequest’s©

ee5 software package. Boosting with ten trials and prun-
ng were the two options used. Basal area models were
onstructed through Rulequest’s© Cubist software pack-
ge, a proprietary variant on regression trees with piece-
ise non-overlapping regression. Specific software options

sed in our study region included ten committee models,
se of rules alone, minimum rule cover of 1% of cases,
xtrapolation up to 10%, with no maximum number of
ules.
9 ( 2 0 0 6 ) 176–187 181

2.2.3. Stochastic gradient boosting
Stochastic gradient boosting (Friedman, 2001, 2002) is related
to both boosting and bagging. Many small classification or
regression trees are built sequentially from “pseudo”-residuals
(the gradient of the loss function of the previous tree). At each
iteration, a tree is built from a random sub-sample of the
dataset (selected without replacement) producing an incre-
mental improvement in the model. Using only a fraction of
the training data increases both the computation speed and
the prediction accuracy, while also helping to avoid over-fitting
the data. An advantage of stochastic gradient boosting is that
it is not necessary to pre-select or transform predictor vari-
ables. It is also resistant to outliers, as the steepest gradient
algorithm emphasizes points that are close to their correct
classification.

To date, there have been very few published ecological
applications of stochastic gradient boosting. Lawrence et al.
(2004) illustrate the use of stochastic gradient boosting as a
refinement of classification tree analysis in a remote sensing
problem. Application in other fields includes discrimination of
freshwater residency in a coastal fishery from scales collected
from subadult fish (Cappo et al., 2005), microscopy image anal-
ysis of bread (Lindgren and Rousu, 2002), graphical estimation
of a slate deposit (Matias et al., 2004), and calibrating spectro-
scope measurements of organic chemicals in plant samples
(Sheperd et al., 2003).

Stochastic gradient boosting was implemented through
the gbm7 package (Ridgeway, 1999) within R. Model fitting
options include distribution, interaction depth, bagging frac-
tion, shrinkage rate, and training fraction. Friedman (2001,
2002) and Ridgeway (1999) provide guidelines on appropri-
ate settings for model fitting options. These recommenda-
tions coupled with exploratory analyses conducted on an
independent data set led to the following option settings. A
Bernoulli distribution was used for species presence/absence
models, and a Gaussian distribution was used for species basal
area models. Interaction depth, which controls the number of
nodes in the tree and thus the maximum possible interactions,
was set at ten nodes. Bagging fraction controls the fraction of
the training data randomly selected for calculating each tree,
and was set at 0.3 for these analyses. Shrinkage rate controls
the learning speed of the algorithm and we used gbm’s default
learning rate of 0.001. Training fraction sets aside a portion of
the data for computing an out-of-sample estimate of the loss
function. As an independent test set had already been estab-
lished before beginning the modelling exercises, the training
fraction was left at its default value of 1.0, and the out-of-
bag method was used for determining the optimal number of
boosting iterations.

2.3. Evaluation criteria
7 http://www.i-pensieri.com/gregr/gbm.shtml provides a good
overview of the development of boosting leading up to stochas-
tic gbm.

http://www.i-pensieri.com/gregr/gbm.shtml
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Table 3 – Accuracy measures computed using independent test data for the 13 tree species and the three
presence/absence modelling techniques: Rulequest’s© See5 model, general additive models (GAM), and stochastic
gradient boosting (SGB)

Species Kappa Sensitivity Specificity

See5 GAM SGB See5 GAM SGB See5 GAM SGB

ABCO 0.48 0.48 0.57 0.52 0.59 0.57 0.95 0.93 0.96
ABLA 0.53 0.68 0.60 0.65 0.82 0.64 0.89 0.91 0.94
ACGR3 0.38 0.48 0.51 0.41 0.64 0.59 0.97 0.95 0.96
CELE3 0.38 0.46 0.51 0.34 0.38 0.41 0.97 0.99 0.99
JUOS 0.77 0.79 0.81 0.85 0.89 0.96 0.93 0.92 0.90
JUSC2 0.25 0.28 0.33 0.47 0.36 0.58 0.85 0.92 0.85
PICO 0.73 0.77 0.78 0.80 0.86 0.82 0.96 0.96 0.97
PIED 0.63 0.69 0.69 0.77 0.76 0.77 0.88 0.93 0.93
PIEN 0.74 0.76 0.76 0.70 0.83 0.74 0.98 0.96 0.98
PIPO 0.54 0.55 0.52 0.50 0.61 0.53 0.97 0.95 0.96
POTR5 0.66 0.69 0.74 0.74 0.77 0.81 0.92 0.92 0.93
PSME 0.46 0.51 0.51 0.71 0.80 0.69 0.81 0.80 0.86
QUGA 0.50 0.72 0.66 0.53 0.84 0.67 0.94 0.94 0.96

majority of the species for sensitivity (Table 3). Thresholds
were chosen to maximize kappa, with different thresholds
chosen for each of the three modelling techniques. Fig. 3 illus-
trates how a threshold that is optimal for one model may
be inappropriate for other models. Here, the effect of chang-
The thresholds were selected to maximize Kappa.

several global measures were used to assess the predictive
performance of the models. All measures were constructed
using an independent test set created by randomly with-
holding 20% of the plots from FIA’s probability-based sam-
ple in the study area. The first three measures are thresh-
old dependent and include sensitivity, specificity, and Kappa
(Cohen, 1960). Fielding and Bell (1997) provide a review of these
accuracy measures. Sensitivity, or proportion of true posi-
tives, reflects a model’s ability to detect a presence given a
species actually occurs at a location. Specificity, or propor-
tion of true negatives, reflects a model’s ability to predict
an absence where a species does not exist. Thresholds opti-
mized on these measures can, however, be deceptive when
prevalence is very low or very high. The Kappa statistic mea-
sures the proportion of correctly classified units after account-
ing for the probability of chance agreement. Kappa has an
advantage over sensitivity and specificity in that it is more
resistant to prevalence (Manel et al., 2001), though it still
requires a choice of threshold. Thresholds were chosen to opti-
mize Kappa for each species and model, and global measures
of model accuracy were computed using the independent
test set.

ROC plots provide a threshold independent method of eval-
uating the performance of presence/absence models. In a ROC
plot the true positive rate (sensitivity) is plotted against the
false positive rate (1.0, specificity) as the threshold varies from
0 to 1. A good model will achieve a high true positive rate while
the false positive rate is still relatively small; thus the ROC plot
will rise steeply at the origin, then level off at a value near the
maximum of 1. The ROC plot for a poor model (whose pre-
dictive ability is the equivalent of random assignment) will lie
near the diagonal, where the true positive rate equals the false
positive rate for all thresholds. Thus the area under the curve
(AUC) is a good measure of overall model performance, with

good models having an AUC near 1, while poor models have
an AUC near 0.5.

Tests of significant differences between models based on
respective AUC were conducted following DeLong et al. (1988)
using library functions developed at the Mayo Clinic.8 These
functions provided both an overall test for equality of areas,
as well as pair-wise comparisons between each model.

2.3.2. Continuous response
For the basal area by species, site-specific measures of accu-
racy calculated on the same independent test set described
above included relative mean squared error (MSE) and cor-
relation. The relative MSE is calculated by dividing the MSE
obtained when applying the model in question to the inde-
pendent test set by the MSE obtained when simply using the
sample mean as a prediction for the entire independent test
set. Relative MSE’s less than 1 indicate improvement using the
model in question over a simple sample mean. Values greater
than one indicate the models in question perform worse than
a simple sample mean. The correlation is the standard mea-
sure of the linear relationship between two quantitative vari-
ables. Correlation values range from zero to one, with larger
values indicating stronger linear relationship between the pre-
dicted and observed response.

3. Results

3.1. Presence/absence

SGB had higher values for the majority of the species for
specificity and Kappa, while GAMs had higher values for the
8 Developed by Beth Atkinson and Doug Mahoney, available at
http://mayoresearch.mayo.edu/mayo/research/biostat/splusfunc-
tions.cfm for Unix, and http://www.stats.ox.ac.uk/pub/MASS3/
Winlibs/ for Windows.

http://mayoresearch.mayo.edu/mayo/research/biostat/splusfunctions.cfm
http://www.stats.ox.ac.uk/pub/MASS3/Winlibs/
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Fig. 3 – Error threshold plots for Presence/absence of
Populus tremuloides for each of the three models. Different
accuracy measures are indicated by different line types:
s
t
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s
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ensitivity, specificity, kappa. The vertical lines represent
he threshold that maximizes kappa for the three models.

ng a threshold on sensitivity (dashed line), specificity (dotted
ine), and kappa (solid line) is shown for Populus tremuloides
sing each of the three modelling techniques. In all cases,
s one increases the threshold, model sensitivity decreases
hile specificity increases. For this species, a threshold cho-

en to maximize kappa for the GAM model would result in
ower than necessary kappa values for the See5 and the SGB

odels.

ROC plots were studied for each species and modelling

echnique, with three of the species illustrated in Fig. 4. These
pecies have similar prevalence, illustrating that model per-
ormance can vary independently from species prevalence.
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In order to test for significant differences between mod-
elling techniques, we began with an overall test of equality
of AUC for all the models. Eight species yielded significant p-
values for the overall tests (Table 4). Identifying where these
between-model differences occurred was accomplished by
applying a Bonferroni correction to the model-to-model com-
parisons. Using three pair-wise comparisons, the alpha value
was calculated as 0.0167. Resulting p-values are also shown in
Table 4. Specific model differences are illustrated in Table 5.
Here, a line under two model techniques indicates the pair-
wise test was unable to distinguish a significant difference
between those two models. A line under all three models
indicates no significant difference between them. Eight of
the 13 species showed an overall significant difference. Of
those eight, GAM was significantly highest for one species, and
either GAM or SGB were significantly highest for five species.
For one species the best model was either SGB or See5, and
for the remaining species the pair-wise tests were unable to
determine highest AUC value (due to the lower power from the
Bonferroni correction).

3.2. Species basal area results

Relative MSE and correlations were obtained using indepen-
dent test data to apply basal area models for all 13 tree
species and three modelling techniques (Table 6). Nine out of
13 species had very poor predictive models with relative MSE
of 0.8 or higher and correlations 0.5 or below. For those nine
marginal species, SGB had the lowest relative MSE’s for six of
them and highest correlations for seven. Interestingly, the rel-
ative MSE from the SGB models never exceeded one, (never
predicted worse than the sample mean), for any species. GAM
and Cubist, on the other hand, produced relative MSE greater
than one on seven and four species respectively.

Better results were obtained for Pinus contorta, Pinus edulis,
and Quercus gambelii. For all three of these species, Cubist and
SGB produced similar accuracy values, with Cubist slightly
better. Populus tremuloides was the species for which the high-
est correlations and lowest relative MSE’s were obtained. This
was the most prevalent of all the species, and the only decidu-
ous type assuming normal tree form. Here, all three modelling
techniques were competitive.

4. Discussion

Maps of tree species presence and basal area are needed for
forest management activities, and results from these analy-
ses have implications for species mapping efforts. First, the
widely used See5 and Cubist algorithms may not be provid-
ing the best predictive power. In comparing performance of
modelling techniques, SGB had higher values for the majority
of the species for naı̈ve accuracy, specificity and kappa; while
GAMs had higher values for a majority of the species for sen-
sitivity. In testing for significant difference between resultant
AUC values, eight of the 13 species showed overall significant

difference. Of those eight, the GAM was significantly highest
for one species, while either GAM or SGB were significantly
higher for five species. See5 tied with SGB for only one species,
and for the remaining species, the pair-wise tests were unable
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Fig. 4 – Receiver Operating Characteristic (ROC) plots and Area Under the Curve (AUC) for general additive models (GAM),
(SG
Rulequest’s© Cubist model, and stochastic gradient boosting

(JUSC2), Abies concolor (ABCO), and Pinus contorta (PICO).

to distinguish between models. These results may warrant
consideration of alternative modelling techniques within pro-
duction mapping environments.

A second implication from these analyses is that modelling
continuous variables, like individual tree species basal area, is
a difficult task. Most results for the GAM and Cubist models
were no better than, and sometimes worse, than simply pre-
dicting the sample mean (as indicated by a relative MSE less
than one.) One clear pattern that emerged was that SGB typi-
cally outperformed both Cubist and GAMs, and even for those
species for which all models performed badly, SGB never per-
formed worse than using the sample mean. This stability is

valuable in any mapping environment.

Of course, there are potential sources of error in the data
sets used for modelling, including positional uncertainties,
issues pertaining to image processing algorithms, and limita-

Table 4 – Area under the curve and significance tests for the 13
techniques: general additive models (GAM), Rulequest’s See5 m

Symbol Area Under the Curve

GAM See5 SGB Ov

ABCO 0.87 0.86 0.91 0
ABLA 0.92 0.85 0.90 0
ACGR3 0.87 0.87 0.93 0
CELE3 0.88 0.82 0.88 0
JUOS 0.95 0.96 0.97 0
JUSC2 0.79 0.72 0.80 0
PICO 0.97 0.97 0.98 0
PIED 0.93 0.91 0.93 0
PIEN 0.96 0.94 0.96 0
PIPO 0.86 0.89 0.87 0
POTR5 0.92 0.90 0.94 0
PSME 0.84 0.81 0.85 0
QUGA 0.94 0.85 0.90 0

The overall p-value is for the null hypothesis of no difference between th
differences were found in the overall test, pair-wise comparisons are given
with ˛ = 0.05/3=0.0167.
B) models for presence/absence of Juniperous scopulorum

tions in field data collection. These errors may be affecting the
overall accuracies of the models. Some assumptions related to
data locations are that the field sampled response data are
accurately georeferenced, that the predictor data are accu-
rately registered to each other and to the ground reference
data, and that the 90 m × 90 m focal windows encompass the
respective reference locations. The MRLC Landsat products
were registered with quality restrictions of less that 1 pixel
RMSE. Although these standards are considered high quality
for this extensive data set, a shift of one pixel may affect this
registration with the ground reference locations.

Regarding the image processing algorithms, standardiza-

tion methods for the MRLC Landsat product do not elimi-
nate all noise in the data, and may, in fact, introduce errors
into the modelling process. For example, a cubic convolu-
tion resampling procedure was performed to reproject and

tree species and the three presence/absence modelling
odel, and stochastic gradient boosting (SGB)

p-Values

erall GAM-See5 GAM-SGB See5-SGB

.0952

.0044 0.0012 0.2095 0.0026

.0014 0.9147 0.0121 0.0712

.3249

.1456

.0136 0.0428 0.7250 0.0035

.0165 0.9752 0.1208 0.0282

.0238 0.3177 0.5925 0.0075

.1359

.6148

.0023 0.2521 0.0831 0.0006

.0143 0.1267 0.6126 0.0037

.0001 0.0001 0.0080 0.0366

e performances of the three models. For species where significant
. The pair-wise tests were evaluated using the Bonferroni correction
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Table 5 – Summary of the results of the pair-wise tests of
model performance for the three presence/absence
modelling techniques: general additive models (GAM),
Rulequest’s See5 model, and stochastic gradient
boosting (SGB)

g
m
i
a
e
t
v

The underscores connect models where the pair-wise tests were
unable to find a significant difference.

eorectify the Landsat imagery. This procedure was used to
aintain the spatial integrity of the imagery, thereby min-

mizing inconsistencies among different layers (Homer et
l., 2004). Although retaining spatial consistency among lay-

rs, this resampling technique alters the spectral integrity of
he imagery by interpolating data from the nearest 16 pixel
alues.

Table 6 – Relative mean square error (MSE) and
correlations obtained on independent test data when
applying basal area models by the 13 tree species and
the three modelling techniques: general additive models
(GAM), Rulequest’s© Cubist model, and stochastic
gradient boosting (SGB)

Species Relative MSE Correlation

GAM Cubist SGB GAM Cubist SGB

ABCO 1.37 0.98 0.93 0.13 0.24 0.31
ABLA 2.04 0.91 0.86 0.19 0.34 0.38
ACGR3 3.33 2.78 1.00 −0.27 −0.06 0.03
CELE3 0.83 1.01 0.97 0.57 0.18 0.19
JUOS 0.87 1.16 0.96 0.40 0.08 0.23
JUSC2 8.18 1.18 1.00 0.04 −0.06 −0.01
PICO 0.98 0.74 0.76 0.42 0.49 0.49
PIED 1.07 0.74 0.81 0.33 0.54 0.58
PIEN 1.14 0.95 0.87 0.30 0.30 0.35
PIPO 1.27 0.90 1.00 0.20 0.33 0.28
POTR5 0.59 0.56 0.60 0.68 0.68 0.68
PSME 1.95 0.83 0.80 0.16 0.43 0.53
QUGA 1.24 0.72 0.80 0.36 0.53 0.50
9 ( 2 0 0 6 ) 176–187 185

We also acknowledge that difficulty in predicting basal area
may, at least in part, be due to field data collection techniques.
FIA plot design may result in basal area data with high vari-
ance. The plots may simply be too small for accurate calcula-
tion of basal area for areas the size of aggregated pixels.

A final cautionary note is that statistical differences
between modelling techniques may not necessarily translate
to relevant difference from a management perspective. Con-
versely, models that did not produce significantly different
global performance measures may produce wildly different
maps resulting in drastically different implications for man-
agement decisions. Ultimately, maps should be evaluated in
light of their intended use.

5. Conclusions

Three modelling techniques were compared for predicting
species presence and basal area for 13 tree species in the
mountains of Utah, USA. Modelling techniques included the
widely used variants of classification and regression trees
implemented in See5 and Cubist, as well as GAMs, and SGB.

For predicting species presence, SGB had higher values for
a majority of the species for specificity and kappa, while GAMs
had higher values for a majority of the species for sensitivity.
In evaluating resultant AUC values, where significant differ-
ences could be detected between models, GAM and/or SGB
models had significantly higher results than the See5 models.

Predictions of basal area were poor for nine out of 13
species, having relative MSE’s greater than 0.8 and correla-
tions lower than 0.5. SGB, however, provided the most sta-
ble predictions for these species in that relative MSE’s never
exceeded one. For the three species with moderate predic-
tion success, SGB and Cubist were competitive, while all three
modelling tools produced comparably good predictions for the
one remaining species.

Based on these analyses, the authors suggest the follow-
ing when mapping species distributions and tree basal area:
(1) implement SGB, and possibly GAMs, in a production envi-
ronment for mapping species distributions as supplements
or alternatives to the widely used See5 package; (2) question
whether or not modelling individual tree basal area, or other
continuous variables, will produce predictions that are better
than simply applying a sample mean; (3) explore model per-
formance in terms of implications for management decisions.
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